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Most of the slides are taken from tutorial videos by Chipster available at 
https://www.youtube.com/playlist?list=PLjiXAZO27elBj3KYi7ACscgOxlNkNOxPc and from a book 

P.N. Robinson, R.M. Piro, M. Jäger: Computational Exome and Genome Analysis, CRC Press, 2019. 
 

 

RNA-seq data analysis workflow 
 

I. Quality control (QC) of raw reads 
II. Preprocessing if needed 
III. Alignment (= mapping) to reference genome 
IV. Alignment level QC 
V. Quantitation 
VI. Describing the experiment with phenodata 
VII. Experiment level QC 
VIII. Differential expression analysis 
IX. Visualization of reads and results in genomic context 

 
 

Exercise 2.   RNA-seq hands-on tutorial using Chipster:  
Drosophila dataset  

 
In this tutorial you start with a ready-made read count table, and perform experiment level quality 
control. You then detect differentially expressed genes using DESeq2 and edgeR, and learn how to 
take confounding factors into account in differential expression analysis. Finally, you filter data 
based on a given column and play with different visualizations. For example, you learn how to com-
pare gene lists using the interactive Venn diagram.  

We use Drosophila data from an RNAi knock-down experiment of the pasilla splicing factor 
gene. The experiment is a two-group comparison with 4 untreated samples and 3 RNAi-treated 
samples. Unfortunately, some samples were sequenced single end and some paired end, and it is 
your job to correct for this in the differential expression analysis!  
 
 

VII.   Experiment level QC 
 

1. Launch Chipster. Open new session. Select Open example session and course_RNAseq_dro-

sophila. Inspect the session description and check the phenodata file. In particular, pay attention to 
the group, description and readtype columns of the phenodata.  
 

2. Check the experiment level quality with DESeq2 Select the file pasilla_counts.tsv and tool Quali-

ty control / PCA and heatmap of samples with DESeq2. Choose Phenodata column for coloring 
samples in PCA plot = treatment_description Phenodata column for the shape of samples in PCA 
plot = readtype_description  
-Do the groups separate along the first principal component (PC1)? How much variance does this 
principal component explain? How much variance is explained by PC2? Do the single end and paired 
end samples separate along PC2? 

https://www.youtube.com/playlist?list=PLjiXAZO27elBj3KYi7ACscgOxlNkNOxPc
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-According to the heatmap, do there seem to be subgroups within the treated and untreated sam-
ples which are more similar to each other?  

 
 

VIII.   Differential expression analysis 
 

3. Analyze differential expression with edgeR. Select the file pasilla_counts.tsv and run the tool 

RNA-seq / Differential expression using edgeR so that you set Filter out genes which don't have 
counts in at least this many samples = 3. 
-Why do we use the criteria of 3 samples in filtering? Help: “Analyze only genes which have at least 5 
counts in at least this many samples. You should set this to the number of samples in your smallest 
experimental group.” 
-How many differentially expressed genes do you get? 
-Look at the MA plot. How big fold change is required for a gene to be considered statistically signifi-
cantly differentially expressed?  
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“This dispersion plot is typical, with the final estimates shrunk from the gene-wise estimates towards 

the fitted estimates. Some gene-wise estimates are flagged as outliers and not shrunk towards the 
fitted value.” 

 
Multidimensional scaling (MDS) is a means of visualizing the level of similarity of individual 

cases of a dataset. MDS is used to translate "information about the pairwise 'distances' among a set 
of n objects or individuals" into a configuration of n points mapped into an abstract Cartesian space. 

https://en.wikipedia.org/wiki/Similarity_measure
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
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4. Analyze differential expression with DESeq2. Select the file pasilla_counts.tsv and run the tool 

RNA-seq / Differential expression using DESeq2  
-How many differentially expressed genes do you get? 
-Inspect summary.txt. How many genes had some reads mapping to them? How many of those 
genes had too low read counts and were hence left out of the analysis? What was the low count 
threshold that DESeq2 decided? 
-Does the MA plot look different from the one made by edgeR? Why? 
-Are the final dispersion values (blue) always higher than the original ones (black)? 
 

5. Analyze differential expression with DESeq2 so that you take read type into account. Select the 

file pasilla_counts.tsv and the tool RNA-seq / Differential expression using DESeq2, and set the 
parameter Column describing additional experimental factor = readtype. Rename the resulting DE 
list to de-list-deseq2-rt.tsv.  
-How many differentially expressed genes do you get now? Was it a good idea to include the 
readtype?  
-Did DESeq2 decide to use the same low count threshold as before?  

6. Compare the gene lists from exercises 3, 4 and 5 using a Venn diagram. Select the DE lists from 

exercises 3, 4 and 5 by keeping the ctrl/cmd key down. In the visualization panel select the method 
Venn diagram.  
-How many genes do the lists have in common? In order to practice visual selections, select the 
genes found only by edgeR. Go to the Selected tab and click Create dataset from selected.  
 

7. Check how many genes have changed their expression more than 4-fold up and visualize their 

profiles. Select the file de-list-deseq2-rt.tsv and run the tool Utilities / Filter table by column value 
by setting the parameters as follows:  
-Column to filter by = log2FoldChange 
-Does the first column have a title = no 
-Cutoff = 2 (remember that 2 in log2 scale means 4 in linear scale)  
-Filtering criteria = larger-than  
-How many genes have a fold change higher than 4? Visualize them as an interactive expression 
profile.  
 
 
 
//----------------------------------------------------------------------------------------------------------------------------------- 
//----------------------------------------------------------------------------------------------------------------------------------- 
Let us explain expressions used in the headers of columns of tsv-files: 
- logFC: For quantities A and B, the fold change (FC) of B with respect to A is B/A. 
//----------------------------------------------------------------------------------------------------------------------------------- 
- logCPM: Counts per million (CPM) mapped reads are counts scaled by the number of fragments 
you sequenced ( ) times one million: 

 
i.e., the accounted factor is a sequencing depth. 
//----------------------------------------------------------------------------------------------------------------------------------- 
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//----------------------------------------------------------------------------------------------------------------------------------- 
- p-value: 
 
Hráč provedl 300 hodů hrací kostkou, aby vyzkoušel, zda všechna čísla padají se stejnou prav-
děpodobností. Chce testovat na hladině významnosti α = 0,05. Četnosti jednotlivých výsledků jsou 
58, 46, 39, 61, 35 a 61. Test dobré shody vykonejme pomocí softwaru R zadáním příkazů:  
 kostka <- c(58, 46, 39, 61, 35, 61) 

 chisq.test(kostka) 

Výstup je potom:  
     Chi-squared test for given probabilities 

data:  kostka 

X-squared = 13.36, df = 5, p-value = 0.02023 

Poněvadž vypočítaná p-hodnota 0,02023 je menší než zvolená hodnota = 0,05, na hladině 

0,05 zamítáme nulovou hypotézu stejné pravděpodobnosti všech výsledků a na základě na-

měřených dat máme za to, že hrací kostka je „cinknutá“. 
 

p-hodnota (p-value) je číselná hodnota používaná při statistickém testování hypotéz. Testu-

jeme-li na daném statistickém souboru nulovou hypotézu H0 na hladině významnnosti α po-

mocí testové statistiky T, p-hodnota je nejmenší hladina významnosti, při které ještě zamít-

neme H0. V praxi se p-hodnota používá tak, že si předem stanovíme hladinu významnnosti 

α, poté spočítáme pomocí statistického programu p-hodnotu a porovnáme ji s α. Vyjde-li p-

hodnota menší než α, nulovou hypotézu H0 zamítneme, zatímco v opačném případě prohlá-

síme, že na základě zkoumaných dat ji s použitím daného testu zamítnout nelze. Čím menší 

tedy je p-hodnota, tím se nulová hypotéza jeví za jinak stejných podmínek nevěrohodnější. 

By convention, is commonly set to 0.05, 0.01, 0.005, or 0.001. 

 

 
A p-value (shaded green area) is the probability of an observed (or more extreme) result assuming 

that the null hypothesis is true. 

 

In inferential statistics, the null hypothesis is a general statement or default position that the-

re is nothing new happening, like there is no association among groups, or no relationship 

between two measured phenomena. 
//----------------------------------------------------------------------------------------------------------------------------------- 

 

A small p-value means there is a small chance that  
the observed results occurred by chance. FDR (False Discovery 

Rate) is a modification of the p-value. 
  

https://cs.wikipedia.org/wiki/Hrac%C3%AD_kostka
https://cs.wikipedia.org/wiki/Test_dobr%C3%A9_shody
https://cs.wikipedia.org/wiki/R_(programovac%C3%AD_jazyk)
https://cs.wikipedia.org/wiki/Testov%C3%A1n%C3%AD_hypot%C3%A9z
https://en.wikipedia.org/wiki/Inferential_statistics
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//----------------------------------------------------------------------------------------------------------------------------------- 

- FDR (padj): The image below shows a medical test that accurately identifies 90% of real di-

seases/cases. The false discovery rate (FDR) is the ratio of the number of false positive re-

sults to the number of total positive test results. Out of 10,000 people given the test, there are 

450 true positive results (box at top right) and 190 false positive results (box at bottom right) 

for a total of 640 positive results. Of these results, 190/(450+190) = 190/640 = 0.296 are false 

positives so the false discovery rate is 30%. 
 

 
 

If you repeat a test enough times, you will always get a number of false positives. One of the 

goals of multiple testing is to control the FDR: the proportion of these erroneous results. For 

example, you might decide that an FDR rate of more than 5% is unacceptable. Note though, 

that although 5% sounds reasonable, if you’re doing a lot of tests (especially common in me-

dical research), you’ll also get a large number of false positives; for 1000 tests, you could 

expect to get 50 false positives by chance alone. This is called the multiple testing problem, 

and the FDR approach is one way to control for the number of false positives. 
 

The FDR approach adjusts the p-value for a series of tests. A p-value gives you the pro-

bability of a false positive on a single test; If you’re running a large number of tests from 

small samples (which are common in fields like genomics and protoemics), you should use q-

values instead. 

 A p-value of 5% means that 5% of all tests will result in false positives.  
 A q-value of 5% means that 5% of significant results will be false positives. 

The procedure to control the FDR, using q-values, is called the Benjamini-Hochberg proce-

dure, named after Benjamini and Hochberg (1995), who first described it. 
  

https://www.statisticshowto.datasciencecentral.com/ratios-and-rates/
https://www.statisticshowto.datasciencecentral.com/false-positive-definition-and-examples/
https://www.statisticshowto.datasciencecentral.com/multiple-testing-problem/
https://www.statisticshowto.datasciencecentral.com/q-value/
https://www.statisticshowto.datasciencecentral.com/q-value/
https://www.statisticshowto.datasciencecentral.com/benjamini-hochberg-procedure/
https://www.statisticshowto.datasciencecentral.com/benjamini-hochberg-procedure/
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So, for example: 
 
scenario one - you wish to pull out significantly differentially expressed genes for some sort of on-
tology or enrichment analysis. Your primary goal is to identify biological processes, pathways or oth-
er ontology categories. So you may be fairly relaxed with your choice of cutoff in order to be sure to 
have sufficient genes to get a reasonably robust enrichment result. So, you may pick an FDR of < 
0.05, or even 0.1 if you need to pad out your gene lists. 
 
scenario two - you are trying to pick out genes as candidates for bio-assay development, so you'd 
like to find the least number necessary to characterize your system, and you need to be stringent 
about your risk of false positives (wasted money down the road if those fail to validate for your as-
say). So you now pick a more stringent FDR, maybe even going to < 0.01 if that gives you enough to 
continue with. Perhaps you simultaneously throw in a fold change cutoff as well, so only take genes 
with both an FDR < 0.05 and a log2 FC > 2 (picking only highly significant high expressors). 
 
So, as with any choice of statistical criteria, you pick a cutoff that makes sense in light of your ques-
tions(s) and your system. 
//----------------------------------------------------------------------------------------------------------------------------------- 
//----------------------------------------------------------------------------------------------------------------------------------- 
 
 

VIII.   Visualization of reads and results in genomic context 
 

8. Visualize the read counts of the gene which has the smallest padj-value. Select the file de-list-

deseq2-rt.tsv and the tool Utilities / Plot normalized counts for a gene. In the parameters, indicate 
the gene name (FBgn0039155) and set Show names in plot = yes.  
-Do the groups differ clearly in the read counts?  
 


